Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Plants ; 9(10): 1659-1674, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37723204

RESUMO

Crop breeding for mechanized harvesting has driven modern agriculture. In tomato, machine harvesting for industrial processing varieties became the norm in the 1970s. However, fresh-market varieties whose fruits are suitable for mechanical harvesting are difficult to breed because of associated reduction in flavour and nutritional qualities. Here we report the cloning and functional characterization of fs8.1, which controls the elongated fruit shape and crush resistance of machine-harvestable processing tomatoes. FS8.1 encodes a non-canonical GT-2 factor that activates the expression of cell-cycle inhibitor genes through the formation of a transcriptional module with the canonical GT-2 factor SlGT-16. The fs8.1 mutation results in a lower inhibitory effect on the cell proliferation of the ovary wall, leading to elongated fruits with enhanced compression resistance. Our study provides a potential route for introducing the beneficial allele into fresh-market tomatoes without reducing quality, thereby facilitating mechanical harvesting.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Frutas/metabolismo , Melhoramento Vegetal , Agricultura
3.
Plant Cell ; 35(3): 1038-1057, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36471914

RESUMO

Fruit ripening relies on the precise spatiotemporal control of RNA polymerase II (Pol II)-dependent gene transcription, and the evolutionarily conserved Mediator (MED) coactivator complex plays an essential role in this process. In tomato (Solanum lycopersicum), a model climacteric fruit, ripening is tightly coordinated by ethylene and several key transcription factors. However, the mechanism underlying the transmission of context-specific regulatory signals from these ripening-related transcription factors to the Pol II transcription machinery remains unknown. Here, we report the mechanistic function of MED25, a subunit of the plant Mediator transcriptional coactivator complex, in controlling the ethylene-mediated transcriptional program during fruit ripening. Multiple lines of evidence indicate that MED25 physically interacts with the master transcription factors of the ETHYLENE-INSENSITIVE 3 (EIN3)/EIN3-LIKE (EIL) family, thereby playing an essential role in pre-initiation complex formation during ethylene-induced gene transcription. We also show that MED25 forms a transcriptional module with EIL1 to regulate the expression of ripening-related regulatory as well as structural genes through promoter binding. Furthermore, the EIL1-MED25 module orchestrates both positive and negative feedback transcriptional circuits, along with its downstream regulators, to fine-tune ethylene homeostasis during fruit ripening.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Solanum lycopersicum/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Mol Plant ; 13(1): 42-58, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31678614

RESUMO

Dietary anthocyanins are important health-promoting antioxidants that make a major contribution to the quality of fruits. It is intriguing that most tomato cultivars do not produce anthocyanins in fruit. However, the purple tomato variety Indigo Rose, which has the dominant Aft locus combined with the recessive atv locus from wild tomato species, exhibits light-dependent anthocyanin accumulation in the fruit skin. Here, we report that Aft encodes a functional anthocyanin activator named SlAN2-like, while atv encodes a nonfunctional version of the anthocyanin repressor SlMYBATV. The expression of SlAN2-like is responsive to light, and the functional SlAN2-like can activate the expression of both anthocyanin biosynthetic genes and their regulatory genes, suggesting that SlAN2-like acts as a master regulator in the activation of anthocyanin biosynthesis. We further showed that cultivated tomatoes contain nonfunctional alleles of SlAN2-like and therefore fail to produce anthocyanins. Consistently, expression of a functional SlAN2-like gene driven by the fruit-specific promoter in a tomato cultivar led to the activation of the entire anthocyanin biosynthesis pathway and high-level accumulation of anthocyanins in both the peel and flesh. Taken together, our study exemplifies that efficient engineering of complex metabolic pathways could be achieved through tissue-specific expression of master transcriptional regulators.


Assuntos
Antocianinas/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Alelos , Antocianinas/biossíntese , Vias Biossintéticas , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Fatores de Transcrição/metabolismo
6.
New Phytol ; 217(2): 799-812, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29105094

RESUMO

Systemin (SYS), an octadecapeptide hormone processed from a 200-amino-acid precursor (prosystemin, PS), plays a central role in the systemic activation of defense genes in tomato in response to herbivore and pathogen attacks. However, whether PS mRNA is transferable and its role in systemic defense responses remain unknown. We created the transgenic tomato PS gene tagged with the green fluorescent protein (PS-GFP) using a shoot- or root-specific promoter, and the constitutive 35S promoter in Arabidopsis. Subcellular localization of PS-/SYS-GFP was observed using confocal laser scanning microscopy and gene transcripts were determined using quantitative real-time PCR. In Arabidopsis, PS protein can be processed and SYS is secreted. Shoot-/root-specific expression of PS-GFP in Arabidopsis, and grafting experiments, revealed that the PS mRNA moves in a bi-directional manner. We also found that ectopic expression of PS improves Arabidopsis resistance to the necrotrophic fungus Botrytis cinerea, consistent with substantial upregulation of the transcript levels of specific pathogen-responsive genes. Our results provide novel insights into the multifaceted mechanism of SYS signaling transport and its potential application in genetic engineering for increasing pathogen resistance across diverse plant families.


Assuntos
Arabidopsis/genética , Arabidopsis/microbiologia , Botrytis/fisiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Transporte de RNA/genética , Solanum lycopersicum/microbiologia , Arabidopsis/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Resistência à Doença/efeitos dos fármacos , Fluorescência , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Peptídeos/farmacologia , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Plantas Geneticamente Modificadas , Proteólise/efeitos dos fármacos , Transporte de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Frações Subcelulares/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(42): E8930-E8939, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973940

RESUMO

Jasmonoyl-isoleucine (JA-Ile), the active form of the plant hormone jasmonate (JA), is sensed by the F-box protein CORONATINE INSENSITIVE 1 (COI1), a component of a functional Skp-Cullin-F-box E3 ubiquitin ligase complex. Sensing of JA-Ile by COI1 rapidly triggers genome-wide transcriptional changes that are largely regulated by the basic helix-loop-helix transcription factor MYC2. However, it remains unclear how the JA-Ile receptor protein COI1 relays hormone-specific regulatory signals to the RNA polymerase II general transcriptional machinery. Here, we report that the plant transcriptional coactivator complex Mediator directly links COI1 to the promoters of MYC2 target genes. MED25, a subunit of the Mediator complex, brings COI1 to MYC2 target promoters and facilitates COI1-dependent degradation of jasmonate-ZIM domain (JAZ) transcriptional repressors. MED25 and COI1 influence each other's enrichment on MYC2 target promoters. Furthermore, MED25 physically and functionally interacts with HISTONE ACETYLTRANSFERASE1 (HAC1), which plays an important role in JA signaling by selectively regulating histone (H) 3 lysine (K) 9 (H3K9) acetylation of MYC2 target promoters. Moreover, the enrichment and function of HAC1 on MYC2 target promoters depend on COI1 and MED25. Therefore, the MED25 interface of Mediator links COI1 with HAC1-dependent H3K9 acetylation to activate MYC2-regulated transcription of JA-responsive genes. This study exemplifies how a single Mediator subunit integrates the actions of both genetic and epigenetic regulators into a concerted transcriptional program.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Proteínas Nucleares/metabolismo , Acetilação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arseniato Redutases/genética , Arseniato Redutases/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas Correpressoras , Ciclopentanos/metabolismo , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Lisina/metabolismo , Proteínas Nucleares/genética , Oxilipinas/metabolismo , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Nicotiana/genética
9.
Plant Cell ; 26(7): 3167-84, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25005917

RESUMO

To restrict pathogen entry, plants close stomata as an integral part of innate immunity. To counteract this defense, Pseudomonas syringae pv tomato produces coronatine (COR), which mimics jasmonic acid (JA), to reopen stomata for bacterial entry. It is believed that abscisic acid (ABA) plays a central role in regulating bacteria-triggered stomatal closure and that stomatal reopening requires the JA/COR pathway, but the downstream signaling events remain unclear. We studied the stomatal immunity of tomato (Solanum lycopersicum) and report here the distinct roles of two homologous NAC (for NAM, ATAF1,2, and CUC2) transcription factors, JA2 (for jasmonic acid2) and JA2L (for JA2-like), in regulating pathogen-triggered stomatal movement. ABA activates JA2 expression, and genetic manipulation of JA2 revealed its positive role in ABA-mediated stomatal closure. We show that JA2 exerts this effect by regulating the expression of an ABA biosynthetic gene. By contrast, JA and COR activate JA2L expression, and genetic manipulation of JA2L revealed its positive role in JA/COR-mediated stomatal reopening. We show that JA2L executes this effect by regulating the expression of genes involved in the metabolism of salicylic acid. Thus, these closely related NAC proteins differentially regulate pathogen-induced stomatal closure and reopening through distinct mechanisms.


Assuntos
Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Transdução de Sinais , Solanum lycopersicum/fisiologia , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Aminoácidos/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Reporter , Interações Hospedeiro-Patógeno , Indenos/metabolismo , Solanum lycopersicum/citologia , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/imunologia , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética
10.
Hum Mutat ; 34(9): 1289-97, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23757194

RESUMO

A CA-repeat microsatellite in insulin-like growth factor 1 (IGF1) promoter was associated with interindividual variation of circulating IGF1 level. Previously, we reported that such association was due to variation of haplotype unit in a linkage disequilibrium block composed of microsatellite and single-nucleotide polymorphisms (SNPs), suggesting the presence of an interaction between them. In this study, reporter assays were performed to investigate the regulatory effect and interaction of genetic variants on gene expression. We used an in vitro system to compare the transcriptional activities of haplotypes (rs35767:T>C, the CA-repeat microsatellite, rs5742612:T>C, and rs2288377:T>A) in evolutionarily conserved region of IGF1 promoter. In haplotype C-T-T, a longer microsatellite had a lower transcriptional activity (17.6 ± 2.4-fold for 17 repeats and 8.3 ± 1.1-fold for 21 repeats), whereas in haplotype T-C-A, such trend could not be observed, as the microsatellite with 21 repeats had the highest transcriptional activity (17.5 ± 2.3-fold). Because the microsatellite and SNPs affected the transcriptional activity of each other, there may be an interaction between them in the regulation of IGF1 expression. For the first time, we demonstrated that a noncoding microsatellite polymorphism could act as a functional unit and interact with SNPs in the regulation of transcription in human genome.


Assuntos
Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Sequência de Bases , Regulação da Expressão Gênica , Variação Genética , Genoma Humano , Haplótipos , Humanos , Desequilíbrio de Ligação , Dados de Sequência Molecular , Regiões Promotoras Genéticas
11.
Plant Cell ; 24(7): 2898-916, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22822206

RESUMO

Transcriptional regulation plays a central role in plant hormone signaling. At the core of transcriptional regulation is the Mediator, an evolutionarily conserved, multisubunit complex that serves as a bridge between gene-specific transcription factors and the RNA polymerase machinery to regulate transcription. Here, we report the action mechanisms of the MEDIATOR25 (MED25) subunit of the Arabidopsis thaliana Mediator in regulating jasmonate- and abscisic acid (ABA)-triggered gene transcription. We show that during jasmonate signaling, MED25 physically associates with the basic helix-loop-helix transcription factor MYC2 in promoter regions of MYC2 target genes and exerts a positive effect on MYC2-regulated gene transcription. We also show that MED25 physically associates with the basic Leu zipper transcription factor ABA-INSENSITIVE5 (ABI5) in promoter regions of ABI5 target genes and shows a negative effect on ABI5-regulated gene transcription. Our results reveal that underlying the distinct effects of MED25 on jasmonate and ABA signaling, the interaction mechanisms of MED25 with MYC2 and ABI5 are different. These results highlight that the MED25 subunit of the Arabidopsis Mediator regulates a wide range of signaling pathways through selectively interacting with specific transcription factors.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Nucleares/genética , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ciclopentanos/metabolismo , Proteínas de Ligação a DNA , Flores/citologia , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação , Mutação , Proteínas Nucleares/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Plântula/citologia , Plântula/genética , Plântula/fisiologia , Sementes/citologia , Sementes/genética , Sementes/fisiologia , Fatores de Tempo
12.
New Phytol ; 195(4): 872-882, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22731664

RESUMO

Although the role of auxin in biotrophic pathogenesis has been extensively studied, relatively little is known about its role in plant resistance to necrotrophs. Arabidopsis thaliana mutants defective in different aspects of the auxin pathway are generally more susceptible than wild-type plants to the necrotrophic pathogen Alternaria brassicicola. We show that A. brassicicola infection up-regulates auxin biosynthesis and down-regulates the auxin transport capacities of infected plants, these effects being partially dependent on JA signaling. We also show that these effects of A. brassicicola infection together lead to an enhanced auxin response in host plants. Application of IAA and MeJA together synergistically induces the expression of defense marker genes PDF1.2 (PLANT DEFENSIN 1.2) and HEL (HEVEIN-LIKE), suggesting that enhancement of JA-dependent defense signaling may be part of the auxin-mediated defense mechanism involved in resistance to necrotrophic pathogens. Our results provide molecular evidence supporting the hypothesis that JA and auxin interact positively in regulating plant resistance to necrotrophic pathogens and that activation of auxin signaling by JA may contribute to plant resistance to necrotrophic pathogens.


Assuntos
Alternaria/fisiologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Ácidos Indolacéticos/metabolismo , Alternaria/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efeitos dos fármacos , Ciclopentanos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Mutação/genética , Oxilipinas/farmacologia , Doenças das Plantas/microbiologia
13.
Endocrinology ; 153(7): 3190-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22669896

RESUMO

We previously reported that genistein, a phytoestrogen, up-regulates endothelial nitric oxide synthase (eNOS) and prevents hypertension in rats that are independent of estrogen signaling machinery. However, how genistein regulates eNOS expression is unknown. In the present study, we show that genistein enhanced eNOS expression and NO synthesis in primary human aortic endothelial cells. Inhibition of extracellular signal regulated kinase, phosphoinositol-3 kinase, or protein kinase C did not affect genistein-enhanced eNOS expression and NO synthesis. However, chemical inhibition of protein kinase A (PKA) or adenoviral transfer of the specific endogenous PKA inhibitor gene completely abolished PKA activity and genistein-stimulated eNOS expression and NO production. Accordingly, genistein induced PKA activity and subsequent phosphorylation of cAMP response element (CRE)-binding protein (CREB) at Ser133. Suppression of CREB by small interfering RNA transfection abolished genistein-enhanced eNOS expression and NO production. Consistently, deletion of the CRE site within human eNOS promoter eliminated genistein-stimulated eNOS promoter activity. These findings provide the first evidence to our knowledge that genistein may play a beneficial role in vascular function through targeting the PKA/CREB/eNOS/NO signaling pathway.


Assuntos
Aorta/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Células Endoteliais/citologia , Regulação da Expressão Gênica , Genisteína/farmacologia , Óxido Nítrico Sintase Tipo III/biossíntese , Fitoestrógenos/metabolismo , Regulação para Cima , Sítios de Ligação , Deleção de Genes , Humanos , Fosforilação , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Serina/química , Transdução de Sinais
14.
Plant Cell ; 23(9): 3335-52, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21954460

RESUMO

The root stem cell niche, which in the Arabidopsis thaliana root meristem is an area of four mitotically inactive quiescent cells (QCs) and the surrounding mitotically active stem cells, is critical for root development and growth. We report here that during jasmonate-induced inhibition of primary root growth, jasmonate reduces root meristem activity and leads to irregular QC division and columella stem cell differentiation. Consistently, jasmonate reduces the expression levels of the AP2-domain transcription factors PLETHORA1 (PLT1) and PLT2, which form a developmentally instructive protein gradient and mediate auxin-induced regulation of stem cell niche maintenance. Not surprisingly, the effects of jasmonate on root stem cell niche maintenance and PLT expression require the functioning of MYC2/JASMONATE INSENSITIVE1, a basic helix-loop-helix transcription factor that involves versatile aspects of jasmonate-regulated gene expression. Gel shift and chromatin immunoprecipitation experiments reveal that MYC2 directly binds the promoters of PLT1 and PLT2 and represses their expression. We propose that MYC2-mediated repression of PLT expression integrates jasmonate action into the auxin pathway in regulating root meristem activity and stem cell niche maintenance. This study illustrates a molecular framework for jasmonate-induced inhibition of root growth through interaction with the growth regulator auxin.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Nicho de Células-Tronco , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Diferenciação Celular , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Meristema/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/citologia , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
15.
New Phytol ; 191(2): 360-375, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21466556

RESUMO

The subcellular distribution of the PIN-FORMED (PIN) family of auxin transporters plays a critical role in auxin gradient-mediated developmental processes, including lateral root formation and gravitropic growth. Here, we report two distinct aspects of CORONATINE INSENSITIVE 1 (COI1)- and AUXIN RESISTANT 1 (AXR1)-dependent methyl jasmonate (MeJA) effects on PIN2 subcellular distribution: at lower concentration (5 µM), MeJA inhibits PIN2 endocytosis, whereas, at higher concentration (50 µM), MeJA reduces PIN2 accumulation in the plasma membrane. We show that mutations of ASA1 (ANTHRANILATE SYNTHASE a1) and the TIR1/AFBs (TRANSPORT INHIBITOR RESPONSE 1/AUXIN-SIGNALING F-BOX PROTEINs) auxin receptor genes impair the inhibitory effect of 5 µM MeJA on PIN2 endocytosis, suggesting that a lower concentration of jasmonate inhibits PIN2 endocytosis through interaction with the auxin pathway. In contrast, mutations of ASA1 and the TIR1/AFBs auxin receptor genes enhance, rather than impair, the reduction effect of 50 µM MeJA on the plasma membrane accumulation of PIN2, suggesting that this action of jasmonate is independent of the auxin pathway. In addition to the MeJA effects on PIN2 endocytosis and plasma membrane residence, we also show that MeJA alters lateral auxin redistribution on gravi-stimulation, and therefore impairs the root gravitropic response. Our results highlight the importance of jasmonate-auxin interaction in the coordination of plant growth and the adaptation response.


Assuntos
Acetatos/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Ciclopentanos/farmacologia , Endocitose/efeitos dos fármacos , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Antranilato Sintase/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico/efeitos dos fármacos , Membrana Celular/metabolismo , Regulação para Baixo , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Gravitropismo/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Mutação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Receptores de Superfície Celular/genética , Proteínas Recombinantes de Fusão , Transdução de Sinais/efeitos dos fármacos
16.
Plant Physiol ; 156(2): 550-63, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21478367

RESUMO

We have previously shown that the Arabidopsis (Arabidopsis thaliana) RING-H2 E3 ligase RHA2a positively regulates abscisic acid (ABA) signaling during seed germination and postgerminative growth. Here, we report that RHA2b, the closest homolog of RHA2a, is also an active E3 ligase and plays an important role in ABA signaling. We show that RHA2b expression is induced by ABA and that overexpression of RHA2b leads to ABA-associated phenotypes such as ABA hypersensitivity in seed germination and seedling growth, enhanced stomatal closure, reduced water loss, and, therefore, increased drought tolerance. On the contrary, the rha2b-1 mutant shows ABA-insensitive phenotypes and reduced drought tolerance. We provide evidence showing that a rha2a rha2b-1 double mutant generally enhances ABA insensitivity of rha2b-1 in seed germination, seedling growth, and stomatal closure, suggesting that RHA2b and RHA2a act redundantly in regulating ABA responses. Genetic analyses support that, like RHA2a, the RHA2b action in ABA signaling is downstream of a protein phosphatase 2C, ABA-INSENSITIVE2 (ABI2), and in parallel with that of the ABI transcription factors ABI3/4/5. We speculate that RHA2b and RHA2a may have redundant yet distinguishable functions in the regulation of ABA responses.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Transporte/metabolismo , Secas , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ácido Abscísico/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Germinação/efeitos dos fármacos , Dados de Sequência Molecular , Mutação/genética , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Domínios RING Finger , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
17.
Mol Plant ; 4(4): 607-15, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21357647

RESUMO

Wound-inducible proteinase inhibitors (PIs) in tomato plants provide a useful model system to elucidate the signal transduction pathways that regulate systemic defense response. Among the proposed intercellular signals for wound-induced PIs expression are the peptide systemin and the oxylipin-derived phytohormone jasmonic acid (JA). An increasing body of evidence indicates that systemin and JA work in the same signaling pathway to activate the expression of PIs and other defense-related genes. However, relatively less is known about how these signals interact to promote cell-to-cell communication over long distances. Genetic analysis of the systemin/JA signaling pathway in tomato plants provides a unique opportunity to study, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate systemic expression of defense-related genes. Previously, it has been proposed that systemin is the long-distance mobile signal for defense gene expression. Recently, grafting experiments with tomato mutants defective in JA biosynthesis and signaling provide new evidence that JA, rather than systemin, functions as the systemic wound signal, and that the biosynthesis of JA is regulated by the peptide systemin. Further understanding of the systemin/JA signaling pathway promises to provide new insights into the basic mechanisms governing plant defense to biotic stress.


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Solanum lycopersicum/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética
18.
Plant Cell ; 22(11): 3692-709, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21045165

RESUMO

Recent identification of the Arabidopsis thaliana tyrosylprotein sulfotransferase (TPST) and a group of Tyr-sulfated peptides known as root meristem growth factors (RGFs) highlights the importance of protein Tyr sulfation in plant growth and development. Here, we report the action mechanism of TPST in maintenance of the root stem cell niche, which in the Arabidopsis root meristem is an area of four mitotically inactive quiescent cells plus the surrounding mitotically active stem cells. Mutation of TPST leads to defective maintenance of the root stem cell niche, decreased meristematic activity, and stunted root growth. We show that TPST expression is positively regulated by auxin and that mutation of this gene affects auxin distribution by reducing local expression levels of several PIN genes and auxin biosynthetic genes in the stem cell niche region. We also show that mutation of TPST impairs basal- and auxin-induced expression of the PLETHORA (PLT) stem cell transcription factor genes and that overexpression of PLT2 rescues the root meristem defects of the loss-of-function mutant of TPST. Together, these results support that TPST acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1 and PLT2. TPST-dependent sulfation of RGFs provides a link between auxin and PLTs in regulating root stem cell niche maintenance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Nicho de Células-Tronco , Sulfotransferases/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/anatomia & histologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Meristema/anatomia & histologia , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Mutação , Filogenia , Raízes de Plantas/metabolismo , Transdução de Sinais/fisiologia , Sulfotransferases/classificação , Sulfotransferases/genética , Fatores de Transcrição/genética
19.
Cell Res ; 20(5): 539-52, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20354503

RESUMO

Jasmonic acid (JA) is a fatty acid-derived signaling molecule that regulates a broad range of plant defense responses against herbivores and some microbial pathogens. Molecular genetic studies have established that JA also performs a critical role in several aspects of plant development. Here, we describe the characterization of the Arabidopsis mutant jasmonic acid-hypersensitive1-1 (jah1-1), which is defective in several aspects of JA responses. Although the mutant exhibits increased sensitivity to JA in root growth inhibition, it shows decreased expression of JA-inducible defense genes and reduced resistance to the necrotrophic fungus Botrytis cinerea . Gene cloning studies indicate that these defects are caused by a mutation in the cytochrome P450 protein CYP82C2. We provide evidence showing that the compromised resistance of the jah1-1 mutant to B . cinerea is accompanied by decreased expression of JA-induced defense genes and reduced accumulation of JA-induced indole glucosinolates (IGs). Conversely, the enhanced resistance to B. cinerea in CYP82C2-overexpressing plants is accompanied by increased expression of JA-induced defense genes and elevated levels of JA-induced IGs. We demonstrate that CYP82C2 affects JA-induced accumulation of the IG biosynthetic precursor tryptophan (Trp), but not the JA-induced IAA or pathogen-induced camalexin. Together, our results support a hypothesis that CYP82C2 may act in the metabolism of Trp-derived secondary metabolites under conditions in which JA levels are elevated. The jah1-1 mutant should thus be important in future studies toward understanding the mechanisms underlying the complexity of JA-mediated differential responses, which are important for plants to adapt their growth to the ever-changing environments.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Ciclopentanos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosinolatos/metabolismo , Oxilipinas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Botrytis/patogenicidade , Genes de Plantas , Indóis/metabolismo , Mutação , Doenças das Plantas
20.
Plant Signal Behav ; 4(5): 464-6, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19816098

RESUMO

Jasmonate- and ABA-mediated signalings are involved in the activation of defense responses of plants to biotic and abiotic stresses. Accumulating evidence has suggested the existence of comprehensive synergistic or antagonistic cross-talks between these two signaling pathways. However, relatively little is known about how these cross-talks are executed at the molecular level. Our recent works have implied that, ANAC019 and ANAC055, two highly related NAC family transcription factors in Arabidopsis, may play a dual role in regulating jasmonate response and ABA response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...